ADVANCED PLACEMENT PHYSICS 2 TABLE OF INFORMATION

CONICTANTO	AND COM	/EDCION	EACTODE
CONSTANTS	ANDCON	/ EKSION	FACIORS

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$ $R = 8.31 \text{ J/(mol \cdot \text{K})}$ Universal gas constant, $k_{\rm B} = 1.38 \times 10^{-23} \text{ J/K}$ Boltzmann's constant,

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$ 1 atmosphere of pressure,

 $k = \frac{1}{4\pi\varepsilon_0} = 9.0 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$ Coulomb constant,

Proton mass. $m_p = 1.67 \times 10^{-27} \text{ kg}$ $m_{z} = 1.67 \times 10^{-27} \text{ kg}$ Neutron mass, $m_a = 9.11 \times 10^{-31} \text{ kg}$ Electron mass, $e = 1.60 \times 10^{-19} \text{ C}$ Elementary charge,

 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$ Vacuum permittivity, $\mu_0 = 4\pi \times 10^{-7} \ (\text{T} \cdot \text{m}) / \text{A}$ Vacuum permeability,

 $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$ 1 electron volt,

 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$ Planck's constant,

 $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1240 \text{ eV} \cdot \text{nm}$

 $c = 3.00 \times 10^8 \text{ m/s}$ Speed of light, $b = 2.90 \times 10^{-3} \text{ m} \cdot \text{K}$ Wien's constant,

Stefan-Boltzmann constant,

 $\sigma = 5.67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$ 1 u = 1.66×10⁻²⁷ kg = 931 MeV/c² 1 unified atomic mass unit,

Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

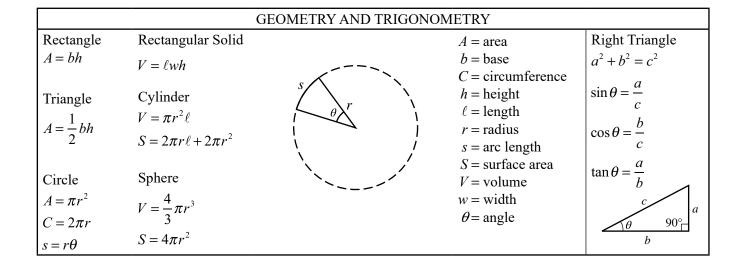
Magnitude of the acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$

Magnitude of the gravitational field strength at Earth's surface, g = 9.8 N/kg

UNIT SYMBOLS		
ampere,	A	
coulomb,	C	
degree Celsius,	°C	
electron volt,	eV	
farad,	F	
hertz,	Hz	
joule,	J	
kelvin,	K	
kilogram,	kg	
meter,	m	
mole,	mol	
newton,	N	
ohm,	Ω	
pascal,	Pa	
second,	S	
tesla,	T	
volt,	V	
watt,	W	

PREFIXES			
Factor	Prefix	Symbol	
10 ¹²	tera	T	
10 ⁹	giga	G	
10^{6}	mega	M	
10^{3}	kilo	k	
10^{-2}	centi	С	
10^{-3}	milli	m	
10^{-6}	micro	μ	
10 ⁻⁹	nano	n	
10^{-12}	pico	p	

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞


The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- The electric potential is zero at an infinite distance from an isolated point charge.
- The direction of current is the direction in which positive charges would drift.
- All batteries, wires, and meters are assumed to be ideal unless otherwise stated.

ELECTRICITY		MAGNETISM		
$\begin{split} \left \vec{F}_E \right &= \frac{1}{4\pi\varepsilon_0} \frac{\left q_1 q_2 \right }{r^2} = k \frac{\left q_1 q_2 \right }{r^2} \\ \vec{E} &= \frac{\vec{F}_E}{q} \\ \left \vec{E} \right &= \frac{1}{4\pi\varepsilon_0} \frac{\left q \right }{r^2} = k \frac{\left q \right }{r^2} \\ U_E &= \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r} = k \frac{q_1 q_2}{r} \\ \Delta V &= \frac{\Delta U_E}{q} \\ V &= \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_i} \\ \left \vec{E} \right &= \left \frac{\Delta V}{\Delta r} \right \\ C &= \kappa\varepsilon_0 \frac{A}{d} \end{split}$	$A = area$ $C = capacitance$ $d = distance$ $E = electric field$ $E = force$ $E = current$ $\ell = length$	$F_{B} = qvB\sin\theta$ $B = \frac{\mu_{0}I}{2\pi r}$ $F_{B} = I\ell B\sin\theta$ $\Phi_{B} = \vec{B} \cdot \vec{A}$ $\Phi_{B} = \vec{B} \cos\theta \vec{A} $ $ \mathcal{E} = \left \frac{\Delta\Phi_{B}}{\Delta t}\right $ $\mathcal{E} = R\ell v$	$A = \text{area}$ $B = \text{magnetic field}$ $F = \text{force}$ $I = \text{current}$ $\ell = \text{length}$ $q = \text{charge}$ $r = \text{distance, radius, or position}$ $t = \text{time}$ $v = \text{velocity or speed}$ $\mathcal{E} = \text{emf}$ $\theta = \text{angle}$ $\Phi = \text{flux}$	
$E_C = \frac{Q}{\kappa \varepsilon_0 A}$		THEF	RMAL PHYSICS	
$U_{C} = \frac{1}{2}Q\Delta V$ $I = \frac{\Delta Q}{\Delta t}$ $R = \frac{\rho \ell}{A}$ $P = I\Delta V$ $I = \frac{\Delta V}{R}$ $R_{eq,s} = \sum_{i} R_{i}$ $\frac{1}{R_{eq,p}} = \sum_{i} \frac{1}{R_{i}}$ $\frac{1}{C_{eq,s}} = \sum_{i} \frac{1}{C_{i}}$ $C_{eq,p} = \sum_{i} C_{i}$		$P = \frac{F_{\perp}}{A}$ $K_{\text{avg}} = \frac{3}{2} k_{B} T = \frac{1}{2} m v_{\text{rms}}^{2}$ $\frac{Q}{\Delta t} = \frac{kA\Delta T}{L}$ $PV = nRT = Nk_{B}T$ $U = \frac{3}{2} nRT = \frac{3}{2} Nk_{B}T$ $W = -P\Delta V$ $\Delta U = Q + W$ $Q = mc\Delta T$		

 $\tau = R_{\rm eq} C_{\rm eq}$

WAVES, SOUND, AND OPTICS	MODERN PHYSICS		
$\lambda = \frac{v}{f}$ $a = \text{width}$ $A = \text{amplitude}$ $d = \text{separation}$ $D = \text{path length}$ $f = \text{frequency or focal length}$ $\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$ $F = \text{force}$ $h = \text{height}$ $ M = \left \frac{h_i}{h_o} \right = \left \frac{s_i}{s_o} \right $ $\Delta D = m\lambda$ $\Delta D = m\lambda$ $\Delta D = a \sin \theta$ $a \left(\frac{y_{\min}}{L} \right) \approx m\lambda$ $\Delta D = d \sin \theta$ $d \left(\frac{y_{\max}}{L} \right) \approx m\lambda$ $v = \text{speed}$ $d \left(\frac{y_{\max}}{L} \right) \approx m\lambda$ $v = \text{position}$ $\lambda = \text{wavelength}$ $\theta = \text{angle}$ $\theta = \text{angle}$ $\theta = \text{angular frequency}$ $T = \frac{1}{f}$ $x(t) = A \cos(\omega t) = A \cos(2\pi f t)$ $y(x) = A \cos\left(2\pi \frac{x}{\lambda}\right)$ $ f_{\text{beat}} = f_1 - f_2 $	$E = hf$ $\lambda = \frac{h}{p}$ $\lambda = \frac{b}{p}$ $\lambda = \frac{c}{f}$ $\lambda = \frac{c}{f}$ $\lambda = \frac{c}{f}$ $\lambda = \frac{b}{f}$ $\lambda = \frac$		

MECHANICS AND FLUIDS

a = accelerationd = distance

E = energyF =force J = impulse

m = mass

P = power

t = time

W = workx = positiony = height θ = angle

p = momentum

position

$v_{x} = v_{x0} + a_{x}t$
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$
$\vec{x}_{\rm cm} = \frac{\sum m_i \vec{x}_i}{\sum m_i}$
$\vec{a}_{\rm sys} = \frac{\sum \vec{F}}{m_{\rm sys}} = \frac{\vec{F}_{\rm net}}{m_{\rm sys}}$
$\left \vec{F}_{g} \right = G \frac{m_{1} m_{2}}{r^{2}}$
$\left \vec{F}_{f} \right \leq \left \mu \vec{F}_{n} \right $
$\vec{F}_s = -k\Delta \vec{x}$
$a_c = \frac{v^2}{r}$
$K = \frac{1}{2}mv^2$
$W = F_{\parallel} d = F d \cos \theta$
$\Delta K = \sum_{i} W_{i} = \sum_{i} F_{\parallel,i} d_{i}$
$U_{s} = \frac{1}{2}k(\Delta x)^{2}$
$U_{G} = -\frac{Gm_{1}m_{2}}{r}$
$\Delta U_g = mg\Delta y$
$P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$
$P_{\rm inst} = F_{\parallel} v = F v \cos \theta$
$\vec{p} = m\vec{v}$
$\vec{F}_{\text{net}} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a}$
$\vec{J} = \vec{F}_{\text{avg}} \Delta t = \Delta \vec{p}$
$\vec{v}_{\rm cm} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$

THIEFTECIDO	
$\omega = \omega_0 + \alpha t$	a = acceleration
1 2	A = amplitude or area
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	d = distance
$\omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0)$	f = frequency F = force
0 (0,	
$v = r\omega$	h = height
$a_T = r\alpha$	I = rotational inertia k = spring constant
$\tau = r_{\perp}F = rF\sin\theta$	K = kinetic energy
<u> </u>	$\ell = \text{length}$
$I = \sum m_i r_i^2$	L = angular momentum
$I' = I_{cm} + Md^2$	m = mass
	M = mass $M = mass$
$\alpha_{\text{sys}} = \frac{\Sigma \tau}{I_{\text{sys}}} = \frac{\tau_{\text{net}}}{I_{\text{sys}}}$	P = pressure
$I_{ m sys}$ $I_{ m sys}$ $I_{ m sys}$	r = radius, distance, or
1 _ 2	position
$K = \frac{1}{2}I\omega^2$	t = time
$W = \tau \Lambda \theta$	T = period
	v = velocity or speed
$L = I\omega$	V = velocity of speed $V = $ volume
$L = rmv \sin \theta$	W = work
$\Delta L = \tau \Delta t$	x = position
$\Delta x_{\rm cm} = r\Delta\theta$	y = vertical position
$\Delta x_{\rm cm} = 7 \Delta \theta$	α = angular acceleration
$T = \frac{1}{f}$	θ = angle
f	ρ = density
\overline{m}	τ = torque
$T_s = 2\pi \sqrt{\frac{m}{k}}$	ω = angular speed
<u> </u>	
$T_p = 2\pi \sqrt{\frac{\ell}{g}}$	
$x = A\cos(2\pi ft)$	
$x = A\sin(2\pi ft)$	
$\rho = \frac{m}{V}$	
$P = \frac{F_{\perp}}{A}$	
$P = P_0 + \rho g h$	
$P_{\text{gauge}} = \rho g h$	
$F_b = \rho V g$	
$A_1 v_1 = A_2 v_2$	
$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2$	$+\frac{1}{2}\rho v_2^2$